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2Université de Nice-Sophia Antipolis, CNRS, Observatoire de la Côte d’Azur,
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The dynamics of neutrally buoyant particles transported by a turbulent flow is
investigated for spherical particles with radii of the order of the Kolmogorov
dissipative scale or larger. The pseudo-penalization spectral method that has been
proposed by Pasquetti et al. (Appl. Numer. Math., vol. 58, 2008, pp. 946–954) is
adapted to integrate numerically the simultaneous dynamics of the particle and of
the fluid. Such a method gives a unique handle on the limit of validity of point-
particle approximations, which are generally used in applicative situations. Analytical
predictions based on such models are compared to result of very well-resolved
direct numerical simulations. Evidence is obtained that Faxén corrections reproduce
dominant finite-size effects on velocity and acceleration fluctuations for particle
diameters up to four times the Kolmogorov scale. The dynamics of particles with
larger diameters is consistent with predictions obtained from dimensional analysis.

1. Introduction
A large number of natural and engineering situations involves the transport of

spherical finite-size particles by a fully developed turbulent flow. This includes the
formation of planets in the early solar system, rain formation in clouds, the coexistence
between several species of plankton and many industrial settings encountered in
chemistry and material processes. An important feature of such particles is that they
do not follow exactly the fluid motion but have inertia, a property that leads to the
development of inhomogeneities in their spatial distribution (see Squires & Eaton
1991; Balkovsky, Falkovich & Fouxon 2001; Bec et al. 2007) or to the enhancement
of the rate at which they collide (see Falkovich, Fouxon & Stepanov 2002; Wilkinson,
Mehlig & Bezuglyy 2006; Zaichik, Simonin & Alipchenkov 2006; Bec et al. 2010).
The modelling of such particles generally assumes that their diameter dp is much
smaller than the smallest active length scale of the flow, i.e. the Kolmogorov scale
η, so that they can be approximated by points (see Maxey & Riley 1983; Gatignol
1983). Modelling situations where dp � η relies on the use of various empirical laws
(as reviewed e.g. in Clift, Grace & Weber 1978). Generally such laws are obtained
by considering a particle suspended in a mean laminar flow and interacting only
through the turbulent wake that it creates, but not with a fully developed turbulent
environment maintained by an external energy input.
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Recent experimental developments have triggered a renewal of interest in the
understanding and quantification of finite-size effects in the motion of particles
in a turbulent flow (Qureshi et al. 2007; Volk et al. 2008; Xu & Bodenschatz 2008;
Calzavarini et al. 2009). These works addressed in particular the problem of delimiting
the domain of validity of the point-particle models that are largely used in applicative
fields, and to understand which corrective terms give dominant corrections. Such
questions remain largely open because of the difficulty in constructing analytically
the fluid flow perturbed by the presence of the spherical particle. In the following,
we briefly review the equations that govern the coupled dynamics of the flow and
the particle. In an incompressible fluid with kinematic viscosity ν and subject to an
external volumic forcing strain tensor F, the velocity field u solves the Navier–Stokes
equation

∂t u + (u · ∇)u = − 1

ρf

∇p + ν∇2u + ∇ · F + g, ∇ · u = 0, (1.1)

where g designates the acceleration of gravity. The equation for the fluid is
supplemented by a non-slip boundary condition

u
(

Xp(t) + (dp/2) n, t
)

= Vp(t) + (dp/2) Ωp(t) × n, ∀n : |n| = 1 (1.2)

at the surface ∂B of the spherical particle. Xp(t) denotes here the trajectory of the
centre of the particle, Vp(t) its translational velocity and Ωp(t) its rotation rate. The
motion of the particle is determined by Newton’s second law

mp

dVp

dt
= (mp − mf ) g +

∫
B

∇ · � dV = (mp − mf ) g +

∫
∂B

� · dS, (1.3)

where mp = (π/6)ρp d3
p is the particle mass (with ρp its mass density), mf = (π/6)ρf d3

p

the mass of the displaced fluid, � = −p �3 + μ (∇u + ∇uT) + ρf F denotes the fluid
stress tensor, �3 is the identity and μ = ρf ν the dynamic viscosity. In addition, the
sphere rotation rate Ωp changes according to the conservation of angular momentum

I
dΩp

dt
=

mp

10
d2

p

dΩp

dt
=

dp

2

∫
∂B

n × (� · dS), (1.4)

where n denotes the outward pointing unit vector normal to the surface and where
we have assumed that the mass moment of inertia tensor I is that of a uniform solid
sphere. Solving the system (1.1)–(1.4) is a difficult task as it involves a nonlinear partial
differential equation for the fluid, which is coupled to a moving boundary condition
on the sphere. Analytical treatments of such a complex dynamics has only been done
when neglecting nonlinearities in the flow motion at the scale of the particle, so that
(1.1) reduces to the Stokes equation (this leads to the usual point-particle models).

This study focuses on neutrally buoyant particles, i.e. ρp = ρf . This case is of interest
for applications to problems of plankton dynamics in the ocean or of some types of
ice crystals in clouds. The goal is here to give a complete description of the dynamical
properties of particles with sizes of the order of the Kolmogorov dissipative scale
η. The paper is organized as follows. In § 2, we consider the model given by the
point-particle approximation. We show that in the case of neutrally buoyant particles,
first-order finite-size effects are not due to particle inertia but purely stem from Faxén
corrections. They intervene in the particle dynamics as (dp/λ)2, where λ designates the
Taylor microscale. These results are validated numerically in § 3 thanks to the use of
a new dynamical pseudo-penalization technique that has the advantage of allowing
one to use a spectral code in order to integrate the Navier–Stokes equation with
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the proper boundary conditions. We show that, both for velocity and acceleration
statistics, finite-size effects become noticeable for dp � 3η and that first-order Faxén
corrections are relevant up to dp = 4η. For dp � 4η, the particle dynamics is dominated
by inertial-range physics. We also present results on acceleration time correlation that
confirm this fact. Finally, § 4 is dedicated to concluding remarks and prospectives.

2. Point-particle approximation
The derivation of point-particle models relies on the assumption that the

perturbation of the surrounding flow by particles is well described by the Stokes
equation (see Gatignol 1983; Maxey & Riley 1983; Auton, Hunt & Prud’homme
1988). This assumption clearly requires, on the one hand, that the fluid velocity field
does not display a turbulent behaviour at the scale of the particle, and thus that
dp � η and, on the other hand, that the particle Reynolds number defined with the
velocity difference between the fluid and the particle is very small. The motion of a
neutrally buoyant particle is then given by

dVp

dt
=

dUV

dt
− 12ν

d2
p

(Vp − US) +
6

dp

√
ν

π

∫ t

−∞

(
dUS

ds
− dVp

ds

)
ds√
t − s

, (2.1)

where US and UV account for Faxén corrections. They are averages of the fluid
velocity over the surface and of the fluid acceleration over the volume of the particle,
respectively:

US(t) =
1

π d2
p

∫
∂B

u(x, t) dS and UV(t) =
6

π d3
p

∫
B

u(x, t) dV. (2.2)

The various forcing terms in (2.1) are, in order of appearance, the combination of the
inertia force exerted by the undisturbed flow and the added mass, the Stokes drag
and the Basset–Boussinesq history force. As the above approach supposes that the
particle is much smaller than the Kolmogorov scale, we also have for turbulent flows
that it is well below the Taylor microscale λ. A Taylor expansion of the fluid velocity
in the vicinity of the particle centre leads to

US(t) = u(Xp, t) + (1/40) d2
p ∇2u(Xp, t) + O

[
(dp/λ)4

]
,

UV(t) = u(Xp, t) + (1/24) d2
p ∇2u(Xp, t) + O

[
(dp/λ)4

]
.

}
(2.3)

As the above model for particle dynamics requires that the particle diameter is much
smaller than the Kolmogorov scale η, one can show that the Basset–Boussinesq
history force gives a contribution much smaller than the Stokes drag and can thus
be neglected to leading order. Hence, finite-size neutrally buoyant particles obey
asymptotically the minimal model equation

dVp

dt
=

Du
Dt

(Xp, t) − 12ν

d2
p

[Vp − u(Xp, t)], (2.4)

where D/Dt = ∂t + u · ∇ denotes the material derivative along fluid tracer trajectories.
Note that in this model, the particle size enters only the coefficient of the drag force.
However, as it is now shown, such an effect is actually not sufficient to account for
leading-order corrections due to the particle finite size. Indeed, following Babiano
et al. (2000) and introducing the velocity difference between the particle and the fluid
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W (t) = Vp(t) − u(Xp(t), t), one can easily check that

dW
dt

= −W · ∇u(Xp(t), t) − 12ν

d2
p

W . (2.5)

This implies that W (t) = exp(−12ν t/d2
p) Texp[−

∫ t

0
∇u(Xp(s), s) ds] W (0), where Texp

denotes the time-ordered exponential. Hence the amplitude of the velocity difference
grows exponentially at large time, i.e. |W (t)| � |W (0)| exp[−(12ν/d2

p+λ3) t], where λ3 is

the smallest Lyapunov exponent associated to Texp[−
∫ t

0
∇u(Xp(s), s) ds]. Because of

the fluid flow incompressibility implying a vanishing sum of the Lyapunov exponents,
λ3 � 0. However, when dp is sufficiently small, i.e. when dp �

√
12ν/|λ3|, the

exponential growth rate of |W | is negative and the particle velocity relaxes to that of
the fluid. Estimating the value of λ3 requires in principle to evaluate the Lyapunov
exponents associated to the fluid flow strain along particle trajectories. However,
because of the exponential relaxation of the particle velocities to that of the fluid,
these exponents are exactly those computed along tracer trajectories. The latter have
been evaluated in direct numerical simulations (see e.g. Bec et al. 2006) and, once
normalized by the inverse of the Kolmogorov eddy turnover time τη, depend weakly
upon the Reynolds number of the flow: for Reλ varying from 65 to 185, one observes
τηλ3 = 0.190 % ± 2 %. To summarize, this shows that the minimal model (2.4) exactly
matches tracer dynamics for sizes smaller than a fixed threshold, i.e. for

Φ = dp/η � Φ� =
√

12/(τηλ3) ≈ 8. (2.6)

Hence, for Φ � Φ� finite-size effects are not related to inertia but can only stem
from terms that were neglected in this model. This observation explains why neutrally
buoyant particles whose dynamics are approximated by the point-particle model (2.4)
do not display any clustering properties, as observed by Calzavarini et al. (2008).

Let us now estimate the contribution from terms that were neglected, namely from
the Faxén corrections and the Basset–Boussinesq history term. For this, we follow
the approach of Maxey (1987) developed for small Stokes numbers and write the
following perturbative Ansatz Vp(t) = u(Xp(t), t)+(dp/λ)α f (t)+O[(dp/λ)α], where the
order α and the function f are to be determined. Inserting this form in (2.1) and
(2.3), one obtains that the first-order terms originate from Faxén corrections to the
Stokes drag, so that α = 2 and

Vp(t) = u(Xp(t), t) +
(
d2

p/40
)

∇2u(Xp(t), t) + O
[
(dp/λ)4

]
. (2.7)

Note that the synthetic velocity field defined above is divergence-free, implying that no
effect of particle preferential concentration can be detected with first-order corrections.
This asymptotic form (2.7) implies that the particle velocity variance satisfies〈

|Vp|2
〉

−
〈
|u|2

〉
�

(
d2

p/20
) 〈

u · ∇2u
〉

= −
(
d2

p/20
)
(ε/ν) = −

(〈
|u|2

〉
/100

)
(dp/λ)2, (2.8)

where ε is the mean turbulent rate of kinetic energy dissipation. As for the variance
of particle acceleration, one obtains from the time derivative of (2.7):〈∣∣∣∣dVp

dt

∣∣∣∣
2
〉

−
〈∣∣∣∣Du

Dt

∣∣∣∣
2
〉

� −
d2

p

20

〈∥∥∥∥D∇u
Dt

∥∥∥∥
2
〉

= −
d2

p

20

〈
1

ρ2
f

(∇2p)2 + ν2‖∇2∇u‖2

〉
,

(2.9)

where ‖ · ‖ denotes the tensorial Frobenius norm, i.e. ‖�‖2 = trace (�T �). Note
that the leading terms that appear when writing du/dt in terms of Du/Dt are
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Reλ urms ε ν δx δt η τη λ L TL N 3

32 0.17 4.5 × 10−3 3 × 10−3 1.23 × 10−2 8 × 10−3 5 × 10−2 0.8 0.56 1.2 6.5 5123

Table 1. Parameters of the numerical simulations. Reλ =
√

15urmsL/ν: Taylor–Reynolds
number, urms : root-mean-square (r.m.s.) velocity, ε: mean kinetic energy dissipation rate, ν:
kinematic viscosity, δx: grid spacing, δt: time step, η =(ν3/ε)1/4: Kolmogorov dissipation length
scale, τη = (ν/ε)1/2: Kolmogorov time scale, λ= urms

√
15 ν/ε: Taylor microscale, L = u3

rms/ε:

integral scale, TL = L/urms : large-eddy turnover time, N3: number of collocation points.

exactly equal to the quadratic (vortex stretching) terms appearing in the passage from
∇Du/Dt to D∇u/Dt . To summarize we expect at small diameters that finite-size effects
due to Faxén corrections materialize as a falloff of the two above-mentioned dynamical
properties of particles that behave quadratically as a function of the particle diameter
with a coefficient given by Eulerian averaged quantities.

3. Numerical results using a pseudo-penalization method
In order to assess numerically the effect of the particles’ finite size on their dynamics,

several methods have been used. These range from the use of the Lattice–Boltzmann
approach (Ten Cate et al. 2004), of coupling the outer flow to known solutions
to the Stokes equation near the boundary (Zhang & Prosperetti 2005) to the used
of finite-difference schemes on coupled grids (Burton & Eaton 2005). We decided
to use a pseudo-spectral code that has been adapted to non-trivial geometries by
using a pseudo-penalization strategy. The purely spectral part of the parallel code
LaTu, which was already used to investigate Lagrangian turbulence by Homann
et al. (2007), solves accurately the incompressible Navier–Stokes equations. This
method treats the evolution of the fluid velocity field in Fourier space and computes
convolutions arising from the nonlinear terms in physical space. The Fourier
transformations are performed by the P3DFFT library (Parallel Three-Dimensional
Fast Fourier Transforms, http://www.sdsc.edu/us/resources/p3dfft). The domain is
a triple-periodic cube. This method allows for high accuracy, precise control of the
physical parameters and numerical efficiency. In order to maintain a statistically
steady state we force the flow by prescribing the energy content of the Fourier vectors
with moduli 1 and 2. The energy content of each of these two shells is kept constant
while the individual amplitudes and phases are evolved piecewise linearly in time
between several random configurations separated by a time 10 TL. The advantages of
such a forcing are two-fold: it allows one to achieve a statistically isotropic large-scale
flow and limits the fluctuations of the total kinetic energy to only approximately 10 %
of its mean value. The turbulent characteristics of the flow generated in this way are
summarized in table 1.

In order to impose the no-slip boundary condition on the surface of the spherical
particle, we follow Pasquetti, Bwemba & Cousin (2008) and use a pseudo-penalization
method, which consists in imposing a strong drag to the fluid velocity at the particle
location, so that it relaxes quickly to the particle solid motion. The hydrodynamical
forces acting on the particle are computed by a Riemann approximation of the
integrals appearing in (1.3) and (1.4) on a homogeneous grid of discrete points located
on the surface of the sphere. The value of pressure at these points is computed by
tri-cubic interpolation. The surface integral of the fluid velocity gradient is computed
from evaluating the average velocity on spherical shells surrounding the particle.
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Figure 1. (a) Modulus of the vorticity in a slice of the domain that is passing through
the centre of the embedded particle (dark= high vorticity, light= low vorticity); the particle
diameter is here dp = 8η. (b) Normalized probability density function of the particle velocity for
various particles sizes, as labelled; the bold dash line corresponds to a Gaussian distribution.
Inset: deviation of the particle velocity variance 〈|Vp|2〉 from the fluid value, as a function
of the non-dimensionalized particle diameter Φ = dp/η; the two dashed line represent the
deviation (2.8) from the fluid root-mean-square (r.m.s.) velocity that is expected to stem from

Faxén corrections and a behaviour ∝ d
2/3
p , respectively .

At the moment, the simulations are limited to a single particle in order to prevent
the individual dynamical properties from being contaminated by particle–particle
hydrodynamical interactions. Notice however that the code is very well adapted
to situations involving several particles. Because only a single isolated particle is
considered in the flow, the statistical convergence of particle-related quantities requires
to perform averages over very long times. Each simulation for a single value of the
particle diameter required to integrate the flow over more than 300 large-eddy turnover
times. Eight different particle diameters dp are considered within the range 2η–14η.
As the pseudo-penalization technique requires several grid points inside the object in
order to correctly impose the boundary conditions, the Kolmogorov dissipative scale
η is equal to four times the grid spacing, so that the smallest particle is resolved with
nine grid points along its diameter. Resolving well-dissipative scales requires the use
of double floating point precision. Because of the large spatial resolution and the
long time integration which are required, the simulations are very computationally
demanding: this work took approximately four million of single processor CPU hours.
Figure 1(a) shows the typical vorticity field in a cut-plane passing through the centre
of the particle. Note that the signature of a turbulent wake is visible on the right-hand
side of the particle.

To benchmark these simulations, a run with the same parameters as those shown in
table 1 but without any finite-size particle has been performed. In this simulation, we
have integrated the motion of passive point particles with a dynamics obeying (2.4)
and of passive tracers. It is worthwhile mentioning here that turbulent fluid statistical
quantities are observed not to depend on the presence of a particle, up to the statistical
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Figure 2. (a) Acceleration variance of real spheres and of point particles as a function of
the non-dimensionalized particle diameter Φ = dp/η; error bars correspond to an estimation
of the standard deviations. The two dotted vertical line indicate the Taylor microscale λ and
the critical value (2.6) above which point particles deviate from fluid tracers. The dashed
curve corresponds to the behaviour (2.9) predicted from Faxén corrections. (b) Normalized
probability density function of the componentwise particle acceleration for various particle
diameter, as labelled. The bold dashed line on which data almost collapse corresponds to the
log-normal fit of experimental data proposed by Mordant, Crawford & Bodenschatz (2004)
with the value of flatness ≈8.37 as observed in Qureshi et al. (2007). Inset: variation of the
acceleration flatness F as a function of the particle size. The dashed horizontal line correspond
to the value obtained from tracers.

fluctuations due to finite time averages. The particle-free simulation serves thus as a
reference to estimate tracer statistics and Eulerian averages.

Figure 1(b) shows the probability density function (PDF) of the particle velocity
components for various particle diameters. Once normalized by their standard
deviations, these PDFs almost collapse on top of each other and deviate very weakly
from a Gaussian distribution. The measured variance of the particle velocity that
is represented in the inset, decreases as a function of the particle size. For small
diameters, i.e. for Φ = dp/η � 4, the behaviour of the particle velocity variance is very
well described by the prediction (2.8) obtained from Faxén corrections. For Φ � 4, the
deviation from the fluid velocity variance is compatible with the power-law behaviour
∝ Φ2/3 obtained from Kolmogorov 1941 dimensional arguments. This statement has
to be taken cautiously as such a behaviour can only be observed over less than
the third of a decade in particle diameter. Moreover, in the low-Reynolds-number
flow that we are considering here, there is no inertial range in the sense usually
defined through velocity spectrum or increments scaling properties. However, the
spherical averages of fluid quantities that are involved in particle dynamics seems to
be well amenable for dimensional analysis.

We next turn to particle acceleration statistics. Figure 2(a) represents the com-
ponentwise normalized variance of the particle acceleration a0 = 〈(dV i

p/dt)2〉ε−4/3η2/3

as a function of the non-dimensionalized diameter Φ = dp/η, both for the real particles
as well as for the minimal point model (2.4). For real spherical particles, one
distinguishes, as in the case of velocity variance, between two behaviours. When
Φ = dp/η � 4, finite-size effects in the acceleration variance are very well captured by
Faxén corrections and are very close to the prediction (2.9). Note that, thanks to
their isotropic form, the subleading terms appearing in (2.9) could be evaluated here
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through the pressure and velocity spectra. When Φ � 4, one obtains a behaviour that
is compatible with a0 ∝ d−4/3

p . As argued by Qureshi et al. (2007), the variance of
finite-size particle acceleration is related to that of the fluid pressure integrated over
a sphere of diameter dp . The power −4/3 that is observed here differs from the value
−2/3, which was measured by Qureshi et al. (2007). However, as already stressed
for instance in Bec et al. (2007), pressure scaling in low Reynolds number flows is
often dominated by sweeping, leading to a behaviour of the pressure increments
|p(x + ) − p(x)| ∼ 1/3. While no scaling of pressure can be detected in the present
simulations and only a limited range of particle diameter could be investigated, one
cannot exclude that acceleration variance obeys a −4/3 law which is compatible
with a sweeping-dominated pressure spectrum. Another observation is that numerics
confirm the presence of the threshold (2.6) predicted in the previous section for the
minimal point-particle model: indeed the numerical integration of point particles
obeying (2.4) shows that when Φ < 8, the acceleration variance of the latter is
undistinguishable from that of tracers. For Φ > 8, the point-particle model gives an
enhancement of acceleration, which is incompatible with measurements done with
real particles at the Reynolds number considered here. This stresses the irrelevance
of such a model in the case of neutrally buoyant particles. Note finally that in the
case of tracers, the constant a0 is known to show a Reynolds number dependence
a0 ∝ R

1/2
λ (see e.g. Voth et al. 2002). The measured value of approximately 1.3 is in

good agreement with the value that was measured experimentally by Qureshi et al.
(2007).

Figure 2(b) represents the PDF of acceleration components normalized to unity
variances for various values of the particle diameter. As already stressed in Qureshi
et al. (2007), the dependence upon Φ = dp/η is very weak. All distributions seem to
collapse up to the statistical error seen in the tails. The inset of the figure shows
the acceleration flatness F = 〈(dV i

p/dt)4〉/〈(dV i
p/dt)2〉2 as a function of the particle

diameter. The observed decrease from F ≈ 8.5 to F ≈ 6 at dp ≈ 6η should be taken
cautiously as it might correspond to a lack of statistics.

Other measurements relate to two-time statistical properties of particles. Figure 3
represents the acceleration time correlation

C(τ ) ≡
〈(

dV i
p/dt

)
(t + τ )

(
dV i

p/dt
)
(t)

〉
/
〈(

dV i
p/dt

)2
〉

(3.1)

as a function of the time lag τ for various values of the particle diameter. The
numerical measurements reported here are in good agreement with the results of
Calzavarini et al. (2009). Surprisingly, one observes that C(τ ) deviates only very
weakly from the tracer acceleration temporal correlation for diameters less than 4η,
that is when Faxén corrections are expected to be of relevance to capture first-
order finite-size effects. This behaviour is even clearer when looking at the diameter
dependence of the correlation time for particle acceleration. For this we follow
Calzavarini et al. (2009) and introduce the integral time

TI ≡
∫ T0

0

C(τ ) dτ, (3.2)

where T0 is the first zero-crossing time. The inset of figure 3 represents TI/τη

as a function of Φ = dp/η. When Φ � 4, this integral correlation time is, up to
numerical errors, undistinguishable from the value obtained for tracers. When Φ � 4,
the correlation time increases much faster as a function of Φ in a manner that
is compatible with the power-law behaviour TI ∼ Φ2/3. This relates to dimensional
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Figure 3. Componentwise acceleration time correlation C(τ ) defined in (3.1) for various
particle sizes, as labelled. Inset: integral correlation time TI defined from (3.2) as a function of
the non-dimensionalized particle diameter Φ = dp/η.

analysis as the relevant time scale at the particle size relates to the eddy turnover time
∼ε−1/3d2/3

p .

4. Concluding remarks
In this paper it is shown that first-order finite-size corrections to the dynamics

of neutrally buoyant particles are due to Faxén terms and not to particle inertia.
This leads to several predictions on turbulent velocity and acceleration second-order
statistics. Using a pseudo-penalization spectral method, these predictions have been
confirmed numerically for particles with diameters dp up to 4 η. Higher-order statistics
of velocity and acceleration seem much less sensitive to the finiteness of the particle
sizes, since numerical observation suggest that, once normalized to unit variance, their
PDFs collapse on top of each other for various values of the particle diameter.

The irrelevance of particle inertia with respect to Faxén terms at small particle
diameters has noticeable consequences. Firstly, it implies that the particle dynamics is
very well approximated by the advection by a synthetic flow, which is incompressible
to both the leading and the first orders. This means that the effect of preferential
concentration onto the dynamics of neutrally buoyant particles is very weak.
Secondly, such an observation clearly questions the relevance of inertial-particle
models for density contrasts between the particle and the fluid that are close to
one. A third consequence is related to the fact that corrective terms apply when
the particle diameter is much smaller than the Taylor microscale λ rather than the
Kolmogorov dissipative scale η. This fact might partly explain the difficulties in
matching experiments and numerical model including Faxén corrections (see, e.g.
Calzavarini et al. 2009).

For particle diameters larger than ≈4η, inertial-range physics seems to pull strings.
Dimensional estimates given by Kolmogorov 1941 theory seems of relevance. Of
course, issues on numerical resolution compelled the current study to a very limited
range of particle diameters and to a value of the Reynolds number that is so low
that no scaling range can be observed for Eulerian velocity statistics. Studying the
dynamics of particles with inertial-range sizes requires working in higher Reynolds
number flows. Applying the pseudo-penalization method to this scope is the subject
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of on-going work that is mainly focusing on describing the flow modification induced
by the presence of the spherical particle.

This study benefited from fruitful discussions with M. Bourgoin, E. Calzavarini,
R. Pasquetti and Y. Ponty. Part of this research was supported by the French Agence
Nationale de la Recherche under grant No. BLAN07-1 192604. The research leading
to these results has received funding from the European Research Council under
the European Community’s Seventh Framework Program (FP7/2007-2013 Grant
Agreement no. 240579). During his stay in Nice, H. Homann benefitted from a grant
of the DAAD. This work benefited from partial support through DFG-FOR 1048.
Access to the IBM BlueGene/P computer JUGENE at the FZ Jülich was made
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Calzavarini, E., Volk, R., Bourgoin, M., Lévêque, E., Pinton, J.-F. & Toschi, F. 2009 Acceleration
statistics of finite-sized particles in turbulent flow : the role of Faxén forces. J. Fluid. Mech.
630, 179–189.

Clift, R., Grace, J. R. & Weber, M. E. 1978 Bubbles, Drops and Particles . Academic Press.

Falkovich, G., Fouxon, A. & Stepanov, M. G. 2002 Acceleration of rain initiation by cloud
turbulence. Nature 419, 151–154.

Gatignol, R. 1983 The Faxén formulae for a rigid sphere in an unsteady non-uniform Stokes flow.
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